Adriana Lott BSN, RN

Chris Vejnovich, DNP, APRN-CNS, AGCNS-BC

Nebraska Methodist College, Omaha, NE

Problem

Each hour of delay in antibiotics increases mortality—up to 50% in septic shock.

Emergency Departments worldwide struggle to meet sepsis benchmarks due to:

- 1) Variable sepsis presentation
- 2) Comorbidities mimicking sepsis
- 3) Unclear presence of infection

PURPOSE Statement:

Implement evidence-based strategies to reduce delays in antibiotic administration for adult patients that present to the ED with sepsis.

Available Knowledge

- Gained in-depth knowledge of barriers and best practice for early sepsis recognition and treatment
- Analyzed large and small-scale studies to understand gaps and effectiveness.
- Identified importance of multidisciplinary collaboration, sepsis screening tools, and timely interventions to enhance care delivery
- Applied EBP in support of protocol development, compliance drive, and core sepsis measures.
- Strengthened leadership and decision making skills

Methods

☐ Context:

- 24- bed urban Emergency
 Department
- o 60 RN's on staff (30 triage, 30 bedside)
- ~ 31,000 patients /year, all ages
- ~20--40 documented cases/month

☐ Intervention:

- Triage Sepsis Screening (TSS) Tool implemented into triage
- --30 day trial | Paper-based | located in 2 triage rooms
- Staff Education
- --In-person: daily huddle | core meetings
- -- Sepsis flyer: breakroom | email.

~10 meet full criteria/ month Study of Intervention & Measures

- Pre-Post Study design utilized for:
- --Evaluating TSS Tools impact on timely antibiotics
- -- Assessing nurse knowledge and confidence

Data Collection: Patient Outcomes:

- o EMR sepsis reports using sepsis advisor documentation.
- Manual chart audits to eliminate false positives
- Key time intervals analyzed:

Blood culture collection → Antibiotic start
Antibiotic order entry → Antibiotic start
Sepsis alert time → Antibiotic start

Staff Knowledge and Confidence Evaluation:

- Staff surveys via SurveyMonkey:
 - -- 4 Multiple choice (knowledge)
 - --5 Likert Scale (confidence)

Pre survey | 2 weeks prior to education || Post- survey | 30 days after intervention

intervention
The lowa Mode of EBP was the framework chosen to guide this project

Data Analysis

Software used for data collection:

Microsoft Excel

Survey Matching and Analysis:

Unique PIN created by each staff member.

Statistical Methods:

- Independent samples t- test | Survey data
- Descriptive statistics | individual knowledge questions

Results

Patient Volumes:

- 2,989 patients seen in the ED during 30-day intervention period.
- 41 Tools completed | 8 positive | 0 true positives

Sepsis Advisor Data:

Pre- Intervention (30 days)

20 sepsis advisors generated | 5 true positives

Post -intervention (30 days)

14 sepsis advisors generated | 5 true positives

Outcomes: no statistical analysis performed due to low correlating data.

Confidence Survey Results:

Confidence To	otal					
Pre Survey	Pre Survey	Post Survey	Post Survey	df	p	t
(N = 15)	(N = 15)	(N = 3)	(N = 3)	٠,		-
17.2	1.93	17.67	2.08	1	0.79	13

Not statistically significant

Knowledge Survey Results:

Knowledge total						
Pre Survey.	Pre Survey.	Post	Post Survey.			
M.	SD	Survey. M	SD	df	P	t
(N = 15)	(N = 15)	(N = 3)	(N = 3)			
3.36	1.05	3.5	0.58	2	0.83	4.3

Individual Knowledge Question Analysis: Not statistically significant

- Statistically significant improvement in knowledge of antibiotic administration timeframes.
- Pre- survey (M = 0.73, SD = 0.46), | Post- survey (M = 1.00, SD = 0.00), (t = 2.14, p = .04, df = 14),

Discussion

Challenges:

- Short 30- day intervention period
- Low staff engagement
- High-paced ED environment
- Paper-tool

Strengths:

- Address high-priority clinical issue
- Demonstrated feasibility of tool integration
- Used validated tools for assessment
- Education improvement in one key knowledge area.

Limitations:

- Single site, small sample size
- Low number of sepsis cases
- Incomplete data due to reliance of sepsis advisor
- Post-survey response rate low (n = 3)
- No demographic data

Recommendations:

- Extend intervention duration
- Use multiple sites for broader data
 Mandate in-person education
- o Manuale III-person education
- Integrate TSS tool into EMR
 Improve leadership support and
- Improve leadership support and real-time feedback

Conclusions

Highlights:

- Challenges of implementing early sepsis interventions in the high-volume ER.
- Underscored the need for improved engagement, longer intervention period, and system level support to achieve meaningful improvements in care.

Sustainability and future focus:

- Extend duration of intervention
- Expand to multiple sites with diverse populations
- Improve staff training and content delivery

Key Takeaways:

- Voluntary participation limits effectiveness.
- Clinical change is challenging within strong infrastructures.
 - Context, engagement, and sustained effort are critical for success.

References

Nebraska Methodist Hospital Omaha, NE

Adriana.Lott@methodistcollege.edu